Changes

Created page with "À ce stade, il faut également considérer que la logique des prédicats n'est pas utilisée uniquement pour prouver qu'un ensemble particulier de prémisses implique une pre..."
Line 594: Line 594:  
<math>\{a \in x \mid \forall \text{x} \; A(\text{x}) \rightarrow {B}(\text{x}) \vdash A( a)\rightarrow B(a) \}</math>. <math>(1)</math>
 
<math>\{a \in x \mid \forall \text{x} \; A(\text{x}) \rightarrow {B}(\text{x}) \vdash A( a)\rightarrow B(a) \}</math>. <math>(1)</math>
   −
At this point, it must also be considered that predicate logic is not used only to prove that a particular set of premises imply a particular evidence <math>(1)</math>. It is also used to prove that a particular assertion is not true, or that a particular piece of knowledge is logically compatible/incompatible with a particular evidence.
+
À ce stade, il faut également considérer que la logique des prédicats n'est pas utilisée uniquement pour prouver qu'un ensemble particulier de prémisses implique une preuve particulière... <math>(1)</math>. It is also used to prove that a particular assertion is not true, or that a particular piece of knowledge is logically compatible/incompatible with a particular evidence.
    
In order to prove that this proposition is true we must use the above mentioned<u>demonstration by absurdity</u>. If its denial creates a contradiction, surely the dentist's proposition will be true:
 
In order to prove that this proposition is true we must use the above mentioned<u>demonstration by absurdity</u>. If its denial creates a contradiction, surely the dentist's proposition will be true:
Editor, Editors, USER, editor, translator
5,845

edits