Created page with "Les propositions plus simples peuvent être combinées entre elles pour former de nouvelles propositions plus complexes. Cela se produit à l'aide d'opérateurs appelés "opé..."
Line 452:
Line 452:
''‘Heureusement, les propositions mathématiques, si elles sont bien exprimées, ne présentent pas de telles ambiguïtés.’.''
''‘Heureusement, les propositions mathématiques, si elles sont bien exprimées, ne présentent pas de telles ambiguïtés.’.''
−
Simpler propositions can be combined with each other to form new, more complex propositions. This occurs with the help of operators called ''logical operators'' and quantifying connectives which can be reduced to the following<ref>For the sake of simplicity of exposition and reading, we will deal in this chapter with the ''symbol of belonging'', the ''symbol of consequence'' and the "''such that''" as if they were quantifiers and connectives of propositions in classical logic.<br>Strictly speaking, within classical logic they should not be treated as such, but even if we do, this does not absolutely change the meaning of the speech and no inconsistencies of any kind are created.</ref>:
+
Les propositions plus simples peuvent être combinées entre elles pour former de nouvelles propositions plus complexes. Cela se produit à l'aide d'opérateurs appelés "opérateurs logiques" et de connecteurs quantificateurs qui peuvent être réduits à ce qui suit<ref>For the sake of simplicity of exposition and reading, we will deal in this chapter with the ''symbol of belonging'', the ''symbol of consequence'' and the "''such that''" as if they were quantifiers and connectives of propositions in classical logic.<br>Strictly speaking, within classical logic they should not be treated as such, but even if we do, this does not absolutely change the meaning of the speech and no inconsistencies of any kind are created.</ref>:
#''Conjunction'', which is indicated by the symbol <math>\land</math> (and):
#''Conjunction'', which is indicated by the symbol <math>\land</math> (and):