Changes

Created page with "También se utiliza para demostrar que una determinada afirmación no es cierta, o que un determinado conocimiento es lógicamente compatible/incompatible con una determinada..."
Line 594: Line 594:  
<math>\{a \in x \mid \forall \text{x} \; A(\text{x}) \rightarrow {B}(\text{x}) \vdash A( a)\rightarrow B(a) \}</math>. <math>(1)</math>
 
<math>\{a \in x \mid \forall \text{x} \; A(\text{x}) \rightarrow {B}(\text{x}) \vdash A( a)\rightarrow B(a) \}</math>. <math>(1)</math>
   −
Llegados a este punto, también hay que considerar que la lógica de predicados no se utiliza sólo para demostrar que un determinado conjunto de premisas implica una determinada evidencia <math>(1)</math>. It is also used to prove that a particular assertion is not true, or that a particular piece of knowledge is logically compatible/incompatible with a particular evidence.
+
Llegados a este punto, también hay que considerar que la lógica de predicados no se utiliza sólo para demostrar que un determinado conjunto de premisas implica una determinada evidencia <math>(1)</math>. También se utiliza para demostrar que una determinada afirmación no es cierta, o que un determinado conocimiento es lógicamente compatible/incompatible con una determinada prueba.
    
In order to prove that this proposition is true we must use the above mentioned<u>demonstration by absurdity</u>. If its denial creates a contradiction, surely the dentist's proposition will be true:
 
In order to prove that this proposition is true we must use the above mentioned<u>demonstration by absurdity</u>. If its denial creates a contradiction, surely the dentist's proposition will be true:
Editor, Editors, USER, admin, Bureaucrats, Check users, dev, editor, founder, Interface administrators, member, oversight, Suppressors, Administrators, translator
11,492

edits