Created page with "Ce concept est lié au sujet discuté précédemment dans lequel le collègue doit être conscient de sa propre « incertitude subjective » (due à un langage logique class..."
Line 459:
Line 459:
}}</ref>''
}}</ref>''
−
This concept is linked to the previously discussed topic in which the colleague should be aware of his own 'Subjective Uncertainty' (due to a classic logic language 'sick or healthy') and of 'Objective Uncertainty' (due to a probabilistic logic language 'probably sick or probably healthy'). It is not complicated to prove this assertion: the uncertainty we are talking about derives from the fact that the elements, assertions, data, classes and subclasses mentioned and that build the apparatus of the logic of probabilistic's language: Analysandum <math> = \{P(D),a\}</math> and Analysan <math> = \{P(D),a\}</math> are elements that exist in a specific world, and in this case in a dental context in which the element <math>KB</math> of the process indisputably indicates a "basic knowledge" only in a specific dental context.
+
Ce concept est lié au sujet discuté précédemment dans lequel le collègue doit être conscient de sa propre « incertitude subjective » (due à un langage logique classique « malade ou sain ») et de « l'incertitude objective » (due à un langage logique probabiliste ' probablement malade ou probablement en bonne santé'). It is not complicated to prove this assertion: the uncertainty we are talking about derives from the fact that the elements, assertions, data, classes and subclasses mentioned and that build the apparatus of the logic of probabilistic's language: Analysandum <math> = \{P(D),a\}</math> and Analysan <math> = \{P(D),a\}</math> are elements that exist in a specific world, and in this case in a dental context in which the element <math>KB</math> of the process indisputably indicates a "basic knowledge" only in a specific dental context.
This conclusion confirmed by the dentist was the following:
This conclusion confirmed by the dentist was the following: