− | Every scientific idea (whether in medicine, architecture, engineering, chemistry, or any other subject), when put into practice, is subject to small errors and uncertainties. Mathematics - through probability theory and statistical inference - helps to precisely control and thereby contain these uncertainties. It always has to be considered that in all practical cases "the outcomes also depend on many other factors external to the theory", whether they be initial and environmental conditions, experimental errors, or something else.
| + | Chaque idée scientifique (que ce soit en médecine, en architecture, en ingénierie, en chimie ou dans tout autre domaine), lorsqu'elle est mise en pratique, est sujette à de petites erreurs et incertitudes. Mathematics - through probability theory and statistical inference - helps to precisely control and thereby contain these uncertainties. It always has to be considered that in all practical cases "the outcomes also depend on many other factors external to the theory", whether they be initial and environmental conditions, experimental errors, or something else. |
| All the uncertainties about these factors make the theory–observation relationship a probabilistic one. In the medical approach, there are two types of uncertainty that weigh the most on diagnoses: subjective uncertainty and casuality.<ref>{{Cite book | | All the uncertainties about these factors make the theory–observation relationship a probabilistic one. In the medical approach, there are two types of uncertainty that weigh the most on diagnoses: subjective uncertainty and casuality.<ref>{{Cite book |