Changes

no edit summary
Line 109: Line 109:  
===<translate>Set operators</translate>===
 
===<translate>Set operators</translate>===
   −
Given the whole universe <math>U</math> we indicate with <math>x</math> its generic element such that <math>x \in U</math>; then we consider two subsets <math>A</math> and <math>B</math>  internal to <math>U</math> such that <math>A \subset U</math> and <math>B \subset U</math>
+
<translate>Given the whole universe</translate> <math>U</math> <translate>we indicate with</translate> <math>x</math> <translate>its generic element so that</translate> <math>x \in U</math>; <translate>then, we consider two subsets</translate> <math>A</math> and <math>B</math> <translate>internal to</translate> <math>U</math> <translate>so that</translate> <math>A \subset U</math> <translate>and</translate> <math>B \subset U</math>
 
{|
 
{|
|[[File:Venn0111.svg|sinistra|80px]]
+
|[[File:Venn0111.svg|left|80px]]
|'''Union:''' represented by the symbol <math>\cup</math>, indicates the union of the two sets <math>A</math> and <math>B</math> <math>(A\cup B)</math>. It is defined by all the elements that belong to <math>A</math> and <math>B</math> or both:
+
|'''<translate>Union</translate>:''' <translate>represented by the symbol</translate> <math>\cup</math>, <translate>indicates the union of the two sets</translate> <math>A</math> <translate>and</translate> <math>B</math> <math>(A\cup B)</math>. <translate>It is defined by all the elements that belong to</translate> <math>A</math> <translate>and</translate> <math>B</math> <translate>or both</translate>:
    
<math>(A\cup B)=\{\forall x\in U \mid x\in A \land x\in B\}</math>
 
<math>(A\cup B)=\{\forall x\in U \mid x\in A \land x\in B\}</math>
Editor, Editors, USER, admin, Bureaucrats, Check users, dev, editor, Interface administrators, lookupuser, oversight, push-subscription-manager, Suppressors, Administrators, translator, widgeteditor
17,894

edits