Changes

Line 215: Line 215:  
<translate>Now let us assume, for example, that the population sample <math>n</math>, to which our good patient Mary Poppins belongs, is a category of subjects aged 20 to 70. We also assume that in this population we have those who present the elements belonging to the data set <math>D=\{\delta_1,.....\delta_n\}</math> which correspond to the laboratory tests mentioned above and precisa in '[[The logic of classical language]]'</translate>.
 
<translate>Now let us assume, for example, that the population sample <math>n</math>, to which our good patient Mary Poppins belongs, is a category of subjects aged 20 to 70. We also assume that in this population we have those who present the elements belonging to the data set <math>D=\{\delta_1,.....\delta_n\}</math> which correspond to the laboratory tests mentioned above and precisa in '[[The logic of classical language]]'</translate>.
   −
Let us suppose that in a sample of 10,000 subjects from 20 to 70 we will have an incidence of 30 subjects <math>p(D)=0.003</math> showing clinical signs <math>\delta_1</math> and <math>\delta_4
+
<translate>Let us suppose that in a sample of 10,000 subjects from 20 to 70 we will have an incidence of 30 subjects <math>p(D)=0.003</math> showing clinical signs <math>\delta_1</math> and <math>\delta_4
</math>. We preferred to use these reports for the demonstration of the probabilistic process because in the literature the data regarding clinical signs and symptoms for Temporomandibular Disorders have too wide a variation as well as too high an incidence in our opinion.<ref name=":2">{{Cite book  
+
</math></translate>. <translate>We preferred to use these reports for the demonstration of the probabilistic process because in the literature the data regarding clinical signs and symptoms for Temporomandibular Disorders have too wide a variation as well as too high an incidence in our opinion</translate>.<ref name=":2">{{Cite book  
 
  | autore = Pantoja LLQ
 
  | autore = Pantoja LLQ
 
  | autore2 = De Toledo IP
 
  | autore2 = De Toledo IP
Line 339: Line 339:       −
An example of sample partition with presumed probability in which TMJ degeneration (Deg.TMJ) occurs in conjunction with Temporomandibular Disorders (TMDs) would be the following:
+
<translate>An example of a partition with presumed probability in which TMJ degeneration (Deg.TMJ) occurs in conjunction with Temporomandibular Disorders (TMDs) would be the following</translate>:
 
{|
 
{|
 
|+
 
|+
 
|<math>P(D| Deg.TMJ  \cap TMDs)=0.95  \qquad \qquad \; </math>
 
|<math>P(D| Deg.TMJ  \cap TMDs)=0.95  \qquad \qquad \; </math>
 
|
 
|
|where
+
|<translate>where</translate>
 
|
 
|
 
|
 
|
Line 351: Line 351:  
|<math>P(D| Deg.TMJ \cap noTMDs)=0.3  \qquad \qquad  \quad </math>
 
|<math>P(D| Deg.TMJ \cap noTMDs)=0.3  \qquad \qquad  \quad </math>
 
|
 
|
|where
+
|<translate>where</translate>
 
|
 
|
 
|
 
|
Line 358: Line 358:  
|<math>P(D| no Deg.TMJ  \cap TMDs)=0.199  \qquad \qquad \; </math>
 
|<math>P(D| no Deg.TMJ  \cap TMDs)=0.199  \qquad \qquad \; </math>
 
|
 
|
|where
+
|<translate>where</translate>
 
|
 
|
 
|
 
|
Line 365: Line 365:  
|<math>P(D| noDeg.TMJ  \cap noTMDs)=0.001  \qquad \qquad \;</math>
 
|<math>P(D| noDeg.TMJ  \cap noTMDs)=0.001  \qquad \qquad \;</math>
 
|
 
|
|where
+
|<translate>where</translate>
 
|
 
|
 
|
 
|
Line 372: Line 372:     
*
 
*
{{q2|A homogeneous partition provides what we are used to calling Differential Diagnosis.|}}
+
{{q2|<translate>A homogeneous partition provides what we are used to calling Differential Diagnosis</translate>.|}}
      −
====Clinical situations====
+
====<translate>Clinical situations</translate>====
These conditional probabilities demonstrate that each of the partition's four subclasses is causally relevant to patient data <math>D=\{\delta_1,.....\delta_n\}</math> in the population sample <math>PO</math>. Given the aforementioned partition of the reference class, we have the following clinical situations.
+
<translate>These conditional probabilities demonstrate that each of the partition's four subclasses is causally relevant to patient data <math>D=\{\delta_1,.....\delta_n\}</math> in the population sample <math>PO</math></translate>. <translate>Given the aforementioned partition of the reference class, we have the following clinical situations</translate>:
   −
*Mary Poppins <math>\in</math> degeneration of the temporomandibular joint <math>\cap</math>  Temporomandibular Disorders
+
*<translate>Mary Poppins <math>\in</math> degeneration of the temporomandibular joint <math>\cap</math>  Temporomandibular Disorders</translate>
   −
*Mary Poppins <math>\in</math> degeneration of the temporomandibular joint <math>\cap</math> no Temporomandibular Disorders
+
*<translate>Mary Poppins <math>\in</math> degeneration of the temporomandibular joint <math>\cap</math> no Temporomandibular Disorders</translate>
   −
*Mary Poppins <math>\in</math> no degeneration of the temporomandibular joint <math>\cap</math> Temporomandibular Disorders
+
*<translate>Mary Poppins <math>\in</math> no degeneration of the temporomandibular joint <math>\cap</math> Temporomandibular Disorders</translate>
   −
*Mary Poppins <math>\in</math> no degeneration of the temporomandibular joint <math>\cap</math> no Temporomandibular Disorders.
+
*<translate>Mary Poppins <math>\in</math> no degeneration of the temporomandibular joint <math>\cap</math> no Temporomandibular Disorders</translate>
   −
To arrive at the final diagnosis above, we conducted a probabilistic-causal analysis of Mary Poppins' health status whose initial data were <math>D=\{\delta_1,.....\delta_n\}</math>.  
+
<translate>To arrive at the final diagnosis above, we conducted a probabilistic-causal analysis of Mary Poppins' health status whose initial data were <math>D=\{\delta_1,.....\delta_n\}</math></translate>.  
   −
In general, we can refer to a logical process in which we examine the following elements:
+
<translate>In general, we can refer to a logical process in which we examine the following elements</translate>:
    
*an individual: <math>a</math>
 
*an individual: <math>a</math>
Editor, Editors, USER, admin, Bureaucrats, Check users, dev, editor, Interface administrators, lookupuser, oversight, push-subscription-manager, Suppressors, Administrators, translator, widgeteditor
17,894

edits